(Family Features) In today’s AI-powered economy, transformation is no longer optional – it’s essential. Enterprises are eager to embrace generative and agentic AI, but many lack the clarity and confidence to scale it responsibly.
As a global leader in technology and consulting services, Cognizant is helping organizations bridge that gap – turning possibility into progress.
The Moment is Now
AI is reshaping industries, redefining roles, and revolutionizing decision-making. According to Cognizant Research, 61% of senior decision-makers expect AI to drive complete business transformation. Yet, 83% feel unprepared to embed AI into their organizations, citing gaps in talent, governance, and culture.
This disconnect presents a powerful opportunity.
“In the age of AI, transformation isn’t just about technology, it’s about trust, talent and the ability to turn possibility into progress,” said Shveta Arora, head of Cognizant Consulting. “The true impact of AI is delivered when organizations build trust, invest in adaptable talent and embrace bold ideas. By empowering people and embedding AI responsibly, leaders can bridge the gap between potential and progress, ensuring lasting value for business and society.”
A Trusted Voice in AI
As a recognized leader in AI strategy and enterprise transformation, Cognizant brings credibility and clarity to this evolving space. It has been named a Leader and Star Performer by Everest Group in their 2024 AI and Generative AI Services PEAK Matrix Assessment, underscoring its strategic vision and execution.
With thought leadership in AI strategy and enterprise transformation published across thousands of U.S. outlets, its position as a trusted voice in shaping the future of AI has been reinforced. It has also been recognized across the industry for excellence in client service and innovation.
Its platforms – Neuro, Flowsource and the Data and Intelligence Toolkit – are driving real-world impact across industries. Furthermore, a strategic collaboration with a leading enterprise-grade generative AI provider enables secure and scalable deployment of agentic AI in regulated settings, ensuring adherence to compliance and data governance standards
Bridging the AI Adoption Gap
When a leading property intelligence provider’s IT systems were hampering progressing turnaround times, the company turned to Cognizant’s Gen AI-powered Data as a Service and Neuro Business Process (BP) platform. Driven by AI insights and learning, Neuro BP centralized business processing. It automated data collection, case reviews and decision-making to align with the client’s goals. Powered by the platform, the organization saw a reduction in processing time and errors and an increase in productivity.
Stories like these are still the exception.
Despite enthusiasm and investment – global businesses are spending an average of $47.5 million on generative AI this year – many feel they’re moving too slowly. The barriers include talent shortages, infrastructure gaps and unclear governance. These challenges can be overcome by moving from experimentation to execution. With clarity, credibility and conviction, organizations can scale AI responsibly and effectively.
Accelerating Enterprise AI Transformations
Unlike traditional software, AI models are contextual computing engines. They don’t require every path to be spelled out in advance but instead interpret broad instructions and intent, and adapt based on the context they are given. Agentic AI systems lacking business-specific knowledge can lead to generic or unreliable outputs.
To address this, enterprises need systems that can deliver the right information and tools to AI models – enabling accurate decisions, alignment with human goals, compliance with policy frameworks and adaptability to real-time challenges. This is the role of context engineering, an emerging discipline focused on delivering the right context at the right time to agentic systems. Context refers to the sum of a company’s institutional knowledge, including its operating models, roles, goals, metrics, processes, policies and governance – essential ingredients for effective AI.
To guide clients through their AI journey, Cognizant developed the Strategic Enterprise Agentification Framework, an end-to-end model designed to unlock productivity, market expansion and new business models.
At its core is the Agent Development Lifecycle (ADLC), which guides the development of enterprise agents and agentic AI systems across six distinct stages. Designed to align with real-world enterprise dynamics, ADLC supports seamless integration with business applications. This unique approach embeds context engineering into ADLC, ensuring agents are tailored to support real-world enterprise dynamics.
To help bridge vision and execution, businesses can utilize the Neuro AI Multi-Agent Accelerator. This no-code framework allows rapid deployment of custom multi-agent systems.
People Power the Progress
Technology alone doesn’t transform enterprises – people do. With an AI-driven Workforce Transformation (WFT), Cognizant helps organizations reskill employees, redesign roles and build AI fluency. Integrated with the Agentification Framework, WFT is designed to accelerate transformation and support long-term resilience.
From Possibility to Progress
From strategic frameworks to enterprise platforms to workforce readiness, Cognizant equips organizations with the confidence to harness AI responsibly and at scale. In the age of AI, it’s not just about transformation – it’s about leading with purpose.
Explore more at cognizant.com.
Photo courtesy of Shutterstock
Source: Cognizant






